

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF SCIENCE : APPLIED MATHEMATICS AND STATISTICS	
QUALIFICATION CODE: 07BAMS	LEVEL: 7
COURSE: MECHANICS	COURSE CODE: MCS702S.
SESSION: NOVEMBER 2019	PAPER: THEORY
DURATION: 180 Minutes	MARKS: 100

	FIRST OPPORTUNITY EXAMINATION QUESTION PAPER
EXAMINER:	Dr IKO AJIBOLA
MODERATOR:	Prof D. MAKINDE

INSTRUCTIONS

- 1. Answer all the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations.
- 3. All written works must be done in blue or black ink and sketches in pencils

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Excluding this front page)

ATTACHMENTS

None

QUESTION 1 (22 marks)

1.1 If
$$\vec{r} = (t^3 + 2t)i - 3e^{-2t}j + 2\sin 5tk$$
.

1.1.1 Find the vector
$$\frac{d\vec{r}}{dt}$$
 at $t = 0$ [3]

1.1.2 Determine the magnitude of
$$\frac{d\vec{r}}{dt}$$
 at $t = 0$ [3]

1.1.3 Find the unit vector along vector
$$\frac{d^2\vec{r}}{dt^2}$$
 at $t=0$ in terms of the unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} [3]

1.1.4 What is the magnitude of the unit vector of
$$\frac{d^2\vec{r}}{dt^2}$$
 at $t=0$ [3]

- 1.2 If A and B are 3-dimensional vectors. Define:
- 1.2.1 the scalar product of the vectors [2]
- 1.2.2 the vector or cross product of the vectors. [3]
- 1.3 Find the magnitude and direction cosines of the product vector of the following vectors $\overline{P} = 5i + 3j k$ and $\overline{Q} = 2i j + 4k$, in that order. [5]

QUESTION 2(20 marks)

2.1 If
$$\overline{P} = 6t^3\underline{i} + 10t^2\underline{j} - 9t\underline{k}$$
 and $\overline{Q} = 16\underline{i} + t^5\underline{j} + t^2\underline{k}$ are two position vectors.

Determine
$$\frac{d}{dt}(\overline{Q} \bullet \overline{P})$$
 at $t = 2.50$ [6]

2.2 Find
$$\frac{1}{7} \frac{d}{dt} (\overline{P} \times \overline{Q})$$
 at $t = 3.0$ [6]

2.3 Find the definite integral
$$\int_{0}^{2} (\overline{P} \times \overline{Q}) dt$$
 [8]

QUESTION 3 (19 marks)

- 3.1
- 3.1.1 Define the average velocity $v_{av,x}$ of a particle in a straight line motion between two points **A** and B. [3]
- 3.1.2 Using your result in (3.1.1) obtain the **instantaneous** velocity v_x of the straight line motion. [3]
- 3.2 A Sailboat has coordinates $(x_1, y_1) = (130m, 205m)$ at $t_1 = 60.0s$ Two minutes later at time t_2 it has coordinates $(x_2, y_2) = (110m, 218m)$
- 3.2.1 Find the average velocity \overline{V}_{av} of the Sailboat for this time interval. [5]
- 3.2.2 Find the magnitude and direction of \overline{V}_{av} . [3]
- 3.2.3 For $t \ge 20.0s$ the position of a second sailboat as a function of time is $x(t) = b_1 + b_2$ t and $y(t) = c_1 + \frac{c_2}{t}$ for $b_1 = 100m, \ b_2 = 0.500m/s, \ c_1 = 200m, \ and \ c_2 = 360m/s$. Find the instantaneous velocity as a function of time t for $t \ge 20.0s$ [5]

QUESTION 4 (17 marks)

- 4.1 Derive an expression for the work done by a constant force \vec{Q} of magnitude Q on an object that undergoes a displacement \vec{S} along a straight line, when Q makes an angle ϕ with \vec{S} when acting on the object. [4]
- 4.2 The acceleration of a point in rectilinear motion is given by a = -9.8 It is observed that the velocity v is zero, and displacement x is +25 when t = 0 Determine the equation of the displacement. [6]
- 4.3.1 Using $\sum \overline{F} = m\vec{a}$ state Newton's second law of motion in its component forms. [3]
- 4.3.2 A Railway station attendant with spikes on his shoes pulls with a constant horizontal force of magnitude 35N on a box with mass 50kg resting on a flat, frictionless surface.
 Determine the acceleration of the box. [4]

QUESTION 5 (22 marks)

5.1	A projectile of mass m is given an initial velocity v_0 at an angle θ with
	the horizontal. Determine

- 5.1.1 the Range [4]
- 5.1.2 the maximum height [3]
- 5.1.3 the time of flight, assuming the projectile hits on the same plane from which it was fired (neglecting, air resistance). [5]
- 5.2 A small compact car with mass 1500kg traveling due North, with a speed of 25m/s, collides at an intersection with an Intercampus bus of mass 7500kg traveling due West at 13.5m/s. treating each vehicle as a particle, find the total momentum just before collision. [10]

END OF EXAMINATION